Synthesis of pseudo-Ribofuranoses by Stereocontrolled Reactions on 4-Hydroxycyclopent-2-enylmethanol Derivatives

Karoline A. Shoberu and Stanley M. Roberts
Department of Chemistry, University of Exeter, Exeter, Devon EX4 4QD, UK

Abstract

The diol 3 is a major product formed from a Prins reaction on cyclopentadiene and was readily converted into the derivatives 4-7. The latter compounds were obtained in states of high optical purity by using both enzyme-catalysed hydrolysis and esterification reactions. Osmium tetraoxide transformed the ene diol derivatives 4-7 into the corresponding alcohols 8-11. In this way the alcohol (+)-6 was used to prepare (-)-pseudo- β-ribofuranose (-)-2, and the alcohol (-)-4 was used to synthesize (+)-pseudo- α-ribofuranose (+)-1.

There is current interest in the preparation of pseudo-α-ribofuranose (+)- $\mathbf{1}^{1}$ and pseudo- β-ribofuranose (+)-2, ${ }^{2}$ especially in connection with studies aimed at unravelling the mechanism of the biosynthesis of aristeromycin. We report a novel synthesis of the cyclopentane derivatives (+)-1 and (-)2 in states of high optical purity, using an enzyme-catalysed esterification reaction to obtain a suitable chiral synthon.

Results and Discussion

The diol (\pm)-3 is readily obtained from the mixture resulting from the treatment of cyclopentadiene with formaldehyde in formic acid. ${ }^{3}$ The primary hydroxy group can be protected preferentially such that the triphenylmethyl (trityl) derivatives 4 and 5^{4} and the tert-butyldimethylsilyl derivatives 6 and 7 are freely available as the racemates. Furthermore the cyclopentenols 4 and 6 can be obtained in optically active form by using enzyme-catalysed reactions. Thus the acetates 5 and 7 were hydrolysed using selected enzymes as catalysts (Table 1) and aq. acetone as the solvent. While the acetate 5 was stable to hydrolysis in the presence of porcine pancreatic lipase (PPL), pig liver esterase (PLE) catalysed slow hydrolysis of compound 5 to give the alcohol (-)-4 of modest optical purity. In contrast Pseudomonas fluorescens lipase (PFL)-catalysed hydrolysis of the ester 5 gave the alcohol $(+)-4$ in excellent optical purity. Similarly the ester $(\pm)-7$ was hydrolysed enantiospecifically by the same enzyme to give the alcohol (+)-6 and recovered ester (-)-7 in optically pure states. \{The enantiomeric excesses were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy employing tris-[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato]europium(III) as chiral shift reagent $\}$.
The alcohol 4 can also be resolved by a PFL-catalysed acetylation process utilising vinyl acetate as the solvent and

acyl donor, adjusting the reaction time so as to obtain the acetate or the alcohol in a state of high optical purity (Table 2). ${ }^{4}$ The absolute configurations of the materials isolated from the enzyme-catalysed reactions were ascertained by further derivatization (vide infra). Note that, as expected, hydrolysis of the ester 5 and esterification of the alcohol 4, as catalysed by PFL, take place on the substrates possessing the same absolute configuration.

Further transformations of the compounds 3-7 towards pseudo- β-ribofuranose 2 are readily accomplished using osmium tetraoxide (cat.), and N -methylmorpholine N -oxide (NMO) in aq. acetone. In accordance with Kishi's guidelines ${ }^{5}$ hydroxylation takes place from the face of the double bond distant from the adjacent hydroxy or acetate group to give the

$12 R=A c$
$13 \mathrm{R}=$ SiBu' $^{\prime} \mathrm{Me}_{2}$
corresponding products 2, 8-11 (Table 3). (These experiments were conducted on racemic materials and the products were fully characterised as the corresponding diesters 12 and 13.) Furthermore the alcohol (+)-6 was converted into the bis-tertbutyldimethylsilyl derivative and oxidized with osmium tetraoxide in the prescribed manner to give the diol (+)-14. Deprotection, acetylation, chromatography and de-esterification gave tetraol (-)-2 (Scheme 1) with an optical rotation $\left\{[\alpha]_{\mathrm{D}}-10.5 \times 10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}(c 1.0, \mathrm{MeOH})\right\}$ opposite to that reported earlier for authentic $(1 R, 2 S, 3 R, 4 R)-1,2,3-$ tri-hydroxy-4-hydroxymethylcyclopentane (pseudo- β-ribofuranose) $2 .{ }^{6}$

The tritylated diol (-)-4 was acetylated to give compound 5 , which was bis-hydroxylated using osmium tetraoxide to afford the diol 9 ; this was converted in two steps into the acetonide 15, which was in turn oxidized to the ketone 16, reduction of which with sodium borohydride and deprotection gave $(+)$-pseudo- $\alpha-$ ribofuranose 1 in an optically pure state $\left\{\left[\alpha_{\mathrm{D}}\right] 46.7\right.$ (c 0.4 , $\mathrm{MeOH})\}$ (Scheme 2). The efficiency of the synthesis of tetraol 1 from diol 3 meant that it was ideally suited for the preparation of labelled tetraols 17 and 18 , compounds that may be helpful in delineating the biosynthesis of aristeromycin. Thus the deuteriated compound $(\pm)-17$ was prepared from compound 19 in an overall yield of 70%.

Table 1 Hydrolysis of the acetates 5 and 7, using enzymes as catalysts

Substrate	Enzyme	Conversion (\%)	Acetone (\% v/v)	Time (t / h)	Product (ee)
5	Pig liver esterase (PLE)	4	11	96	(-)-(4) (65)
5	Porcine pancreatic lipase (PPL)	<1	6.25	96	
5	Pseudomonas fuorescens lipase (PFL)	25	15	16.5	$(+)-(4)(>95)$
7	Pseudomonas fuorescens lipase (PFL)	50	17	20	$(+)-(6)(>95)$

Table 2 Acetylation of the alcohol 4 using Pseudomonas fuorescens lipase in vinyl acetate

Time (t / h)	Isolated yield $(+)-5(\mathrm{ee})$	Isolated yield $(-)-4(\mathrm{ee})$
46	$22(>95)$	$50(82)$
75	$50(85)$	$46(96)$

Table 3 Oxidation of cyclopentene derivatives 3-7 by using osmium tetraoxide ${ }^{a}$

	Substrate	Product
Yield (\%)		
3	1	87
4	8	81
5	9	89
6	10	84
7	11	96

${ }^{a} 0.01 \mathrm{~mol}$ equiv. $\mathrm{OsO}_{4}, 1.1 \mathrm{~mol}$ equiv. N -methylmorpholine N -oxide, acetone-water (10:1).

Scheme 1 Reagents: i, $\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{SiCl}$, imidazole, 4-(dimethylamino)pyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, OsO_{4} (cat.), NMO , aq. acetone; iii, $\mathrm{Bu}_{4} \mathrm{NF}$ (TBAF) tetrahydrofuran (THF); iv, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{v}, \mathrm{NaOMe}, \mathrm{MeOH}$

Experimental

Ethyl acetate and light petroleum (boiling range $60-80^{\circ} \mathrm{C}$ unless otherwise stated) were distilled prior to use. Dichloromethane was distilled from calcium hydride and stored over $4 \AA$ molecular sieves.

Thin-layer chromatography (TLC) was performed using precoated glass plates (Merck silica gel 60F 254). The plates were visualised using UV light (254 nm) and/or phosphomolybic acid in ethanol, or p-anisaldehyde in glacial acetic acid, or basic potassium permanganate. Flash chromatography (chromatography) was performed using Merck silica $60(40-63 \mu \mathrm{~m})$.
IR spectra were recorded using a Perkin-Elmer 881 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured

Scheme 2 Reagents and conditions: i, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; then OsO_{4}, NMO; ii, 2,2-dimethoxypropane, toluene-p-sulfonic acid (PTSA); then $\mathrm{NaOMe}, \mathrm{MeOH}$; iii, pyridinium chlorochromate (PCC), 4 \AA is sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ iv, $\mathrm{NaBH}_{4}, 90 \%$ aq. $\mathrm{EtOH} ; \mathrm{v}, 80 \%$ aq. $\mathrm{AcOH} ;$ then Amberlyst (\mathbf{H}^{+}) resin, aq. THF

$17 X=D$
$17 X=D$
$18 X=T$

using a Bruker AM 250 spectrometer operating at 250 MHz and 62.9 MHz , respectively. J-Values are given in Hz . Mass spectral data were obtained at the SERC Centre, Swansea. Optical rotations were measured on an AA-1000 polarimeter; $[\alpha]_{\mathrm{D}}$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$.
M.p.s were measured on an Electrothermal capillary melting point apparatus and are not corrected.
$(3 \beta, 5 \beta)-(\pm)$ and $(3 \mathrm{R}, 5 \mathrm{~S})-(-)$ 3-Acetoxy-5-(triphenylmethoxymethyl) cyclopentene 5.-Acetic anhydride ($1.6 \mathrm{~cm}^{3}, 1.73 \mathrm{~g}, 0.02$ mol $)$, pyridine $\left(2.5 \mathrm{~cm}^{3}, 2.45 \mathrm{~g}, 0.031 \mathrm{~mol}\right)$ and DMAP (333.5 $\mathrm{mg}, 2.7 \mathrm{mmol}, 0.4 \mathrm{~mol}$ equiv.) were added to a solution of (\pm) 4β-(triphenylmethoxymethyl)cyclopent-2-en-1 β-ol $4^{3}(2.48 \mathrm{~g}$, $7.8 \mathrm{mmol})$ in dry dichloromethane $\left(18 \mathrm{~cm}^{3}\right)$. After 1.5 h the solvent was removed by evaporation and the residue was chromatographed over silica gel $[(8: 1)$ light petroleumEtOAc] to give (\pm)-3 β-acetoxy- 5β - (triphenylmethoxymethyl)cyclopentene $5(2.76 \mathrm{~g}, 99 \%), R_{f} 0.4$ [light petroleum-EtOAc, (4:1)] as an oil.
(-)-($3 R, 5 S$)-3-Acetoxy-5-(triphenylmethoxymethyl)cyclopentene was synthesized from ($1 R, 4 S$)-(triphenylmethoxy-methyl)cyclopent-2-enol in an identical procedure; $[\alpha]_{D}^{22}$ $-20.2\left(c 1.2, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3062,3030,2916,2868$, $1732,1597,1490,1366,1240,1154$ and $1067 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.60(1 \mathrm{H}$, ddd, $J 14.5,4.5$ and $4.5,4-\mathrm{H}), 2.00(3 \mathrm{H}, \mathrm{s}$, AcO), $2.51(1 \mathrm{H}, \mathrm{ddd}, J 14.5,8$ and $8,4-\mathrm{H}), 2.90-3.04(1 \mathrm{H}, \mathrm{m}, 5-$ H), $3.05-3.20\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 5.64-5.73(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.89(1 \mathrm{H}$, ddd, $J 5.5,2$ and $2,1-\mathrm{H}), 6.13(1 \mathrm{H}$, ddd, $J 5.5,1$ and $2,2-\mathrm{H}$) and 7.21-7.58 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 21.28\left(\mathrm{CH}_{3}, \mathrm{MeCO}_{2}\right)$, $33.72\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 45.10(\mathrm{CH}, \mathrm{C}-5), 67.04\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 79.65(\mathrm{CH}$, $\mathrm{C}-3), 86.37\left(\mathrm{C}, \mathrm{Ph}_{3} \mathrm{C}\right), 126.94$ (CH, Ph), 127.75 (CH, Ph), 128.79 (CH, Ph), 130.41 (CH, C-1), 138.49 (CH, C-2), 144.27 (C, Ph) and $170.88\left(\mathrm{C}, \mathrm{MeCO}_{2}\right)$.

Enzymic Resolution of $(\pm)-4 \beta$-(Triphenylmethoxymethyl)-cyclopent-2-en-1 β-ol 4 --PFL ($325 \mathrm{mg}, 4550$ units) was added to a solution of (\pm)-4 β-(triphenylmethoxymethyl)cyclopent-2-en-1 β-ol 4 ($529 \mathrm{mg}, 1.49 \mathrm{mmol}$) in vinyl acetate ($30 \mathrm{~cm}^{3}$). After 75 h at room temperature, the enzyme was removed by filtration and the residue was washed with ethyl acetate. The combined filtrate and washings were concentrated under reduced pressure and the residue (656 mg) was purified by chromatography over silica gel [(4:1) light petroleum-EtOAc]. The first compound to be eluted was ($3 S, 5 R$)-(+)-3-acetoxy-5-(triphenylmethoxymethyl)cyclopentene $5\left(296 \mathrm{mg}, 50 \%\right.$), $R_{\mathrm{f}} 0.42$, as an oil; $[\alpha]_{\mathrm{D}}^{21}$ $+16.2\left(c 1.5, \mathrm{CHCl}_{3}\right)(85 \% \mathrm{ee})$. This was followed by $(1 R, 4 S)$ -(-)-4-(triphenylmethoxymethyl)cyclopent-2-enol 4 (244 mg , 46%), $R_{\mathrm{f}} 0.16$ as a solid, m.p. $113-114^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}-72$ (c 1.2 , $\left.\mathrm{CHCl}_{3}\right)(95.5 \%$ ee $)$.

Enzyme-catalysed Hydrolysis of (\pm)-3 3β-Acetoxy- 5β-(triphenylmethoxymethyl)cyclopentene (\pm)-5 using PLE. PPL and $P F L$.-Using PLE. A potassium phosphate buffer solution (8 $\left.\mathrm{cm}^{3} ; \mathrm{pH} 7\right)$ was added to a solution of (\pm)-5 ($150.5 \mathrm{mg}, 0.38$ mmol) in acetone ($0.9 \mathrm{~cm}^{3}$). PLE ($100 \mathrm{~mm}^{3}, 253$ units) was added and the mixture was stirred for four days. The reaction mixture was extracted with diethyl ether ($2 \times 10 \mathrm{~cm}^{3}$) and the combined extracts were dried (anhydrous magnesium sulfate), filtered, and concentrated under reduced pressure. The residue $(126.2 \mathrm{mg})$ was chromatographed over silica gel [(4:1) light petroleum-EtOAc] to give first ($3 S, 5 R$)-(+)-3-acetoxy-5-(triphenylmethoxymethyl)cyclopentene $5(110.4 \mathrm{mg}, 73 \%), R_{\mathrm{f}} 0.42$, as an oil, followed by $(1 R, 4 S)$-4-(triphenylmethoxymethyl)-cyclopent-2-enol $4(4.9 \mathrm{mg}, 4 \%), R_{\mathrm{f}} 0.19$, as a solid, m.p. $112-$ $113^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-45.6\left(c 0.2, \mathrm{CHCl}_{3}\right)(65 \%$ ee $)$.
Using PPL. A potassium phosphate buffer solution $\left(8 \mathrm{~cm}^{3}\right.$; $\mathrm{pH} 7)$ was added to a solution of $(\pm)-5(160.9 \mathrm{mg}, 0.40 \mathrm{mmol})$ in acetone ($0.5 \mathrm{~cm}^{3}$). PPL ($80 \mathrm{mg}, 1064$ units) was added and the mixture was stirred for four days with negligible hydrolysis by TLC analysis ($<1 \%$).

Using PFL. A potassium phosphate buffer solution $\left(6 \mathrm{~cm}^{3}\right.$; $\mathrm{pH} 7)$ was added to a solution of $(\pm)-5$ in acetone $\left(0.9 \mathrm{~cm}^{3}\right)$. PFL ($40 \mathrm{mg}, 560$ units) was added and the mixture was stirred for 16.5 h . The mixture was extracted with diethyl ether $(3 \times 15$ cm^{3}) and the combined extracts were dried (anhydrous magnesium sulfate). The solvent was removed by evaporation and the residue was chromatographed [(4:1) light petroleumEtOAc] over silica gel to give recovered starting material 5 ($69.7 \mathrm{mg}, 66 \%$) followed by ($1 S, 4 R$)-(+)-4-(triphenylmethoxy-methyl)cyclopent-2-enol $4(23.5 \mathrm{mg}, 25 \%)(>95 \%$ ee) as a solid, m.p. ${ }^{112-113}{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{26}+63.2$ (c 0.5, CHCl_{3}). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical with those of the racemic compound.
(\pm)-4 β-(tert-Butyldimethylsiloxymethyl)cyclopent-2-en-1 β-ol 6.-tert-Butyldimethylsilyl chloride $(2.36 \mathrm{~g}, 0.016 \mathrm{~mol}, 1 \mathrm{~mol}$. equiv.), imidazole ($2.38 \mathrm{~g}, 0.035 \mathrm{~mol}, 2.2$ mol equiv.) and DMAP
($69.2 \mathrm{mg}, 0.57 \mathrm{mmol}, 0.04 \mathrm{~mol}$. equiv.) were added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the mixed cis-1,4- and 1,2 -diols obtained from the Prins reaction on cyclopentadiene ${ }^{3}(1.78 \mathrm{~g}, 0.02 \mathrm{~mol})$ in dry dichloromethane ($98 \mathrm{~cm}^{3}$) under argon. After being stirred for 3 h at $0^{\circ} \mathrm{C}$, the solids were removed by filtration and washed with dichloromethane. The combined filtrate and washings were concentrated under reduced pressure. The residue (5.93 g) was purified by chromatography on silica gel [(9:1) light petroleum-EtOAc] to give (\pm)-4 β-(tert-butyldimethylsiloxy-methyl)cyclopent-2-en-1 β-ol $6(1.03 \mathrm{~g}, 29 \%), R_{\mathrm{f}} 0.19$, as a liquid; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3394,2957,2933,2893,2859,1614,1385,1254$ and $1084 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 0.87$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right), 1.49(1 \mathrm{H}$, ddd, $J 14,2$ and $2,5-\mathrm{H}), 2.26(1 \mathrm{H}$, ddd, J $14,7$ and $8.5,5-\mathrm{H}), 2.70-2.80(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and OH$), 3.56(1 \mathrm{H}$, dd, $J 4$ and $10,6-\mathrm{H}$), 3.61 (1 H , dd, $J 3.5$ and $10,6-\mathrm{H}$), $4.50-4.64$ $(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.73(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and $5.5,3-\mathrm{H})$ and $5.90(1 \mathrm{H}$, ddd, $J 5.5,2$ and $2,2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.51\left(\mathrm{CH}_{3}, 2 \times \mathrm{Me}\right)$, 18.48 (C, Bu'), $25.96\left(\mathrm{CH}_{3}, \mathrm{Bu}^{t}\right), 37.03\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 46.47(\mathrm{CH}$, $\mathrm{C}-4), 64.80\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 75.67(\mathrm{CH}, \mathrm{C}-1), 134.85(\mathrm{CH}, \mathrm{C}-3)$ and 135.24 ($\mathrm{CH}, \mathrm{C}-2$) (Found: for $\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 228.1784$. $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 228.1784$).
(\pm)-3 3 -Acetoxy-5 β-(tert-butyldimethylsiloxymethyl)cyclopentene 7.-A solution of the (\pm)-alcohol $6(1.03 \mathrm{~g}, 4.5 \mathrm{mmol})$ in dry dichloromethane ($12 \mathrm{~cm}^{3}$) was treated with acetic anhydride ($0.85 \mathrm{~cm}^{3}, 0.99 \mathrm{mg}, 9.10 \mathrm{mmol}$) and pyridine (0.55 $\left.\mathrm{cm}^{3}, 0.54 \mathrm{mg}, 6.8 \mathrm{mmol}\right)$ in the presence of DMAP $(55.0 \mathrm{mg}$, 0.45 mmol) for 2 h . The solvent was removed by evaporation and the residue (2.14 g) was chromatographed over silica gel [(10:1) light petroleum-EtOAc] to give (\pm)-3及-acetoxy- 5β -(tert-butyldimethylsiloxymethyl)cyclopentene $7(1.14 \mathrm{~g}, 94 \%$), $R_{\mathrm{f}} 0.34$, as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2934,2860,1736,1365,1242$ and 1082; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.03(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 0.87$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 1.50(1 \mathrm{H}$, ddd, $J 14.5,4.5$ and $4.5,4-\mathrm{H}), 2.00(3 \mathrm{H}$, $\mathrm{s}, \mathrm{AcO}), 2.40(1 \mathrm{H}, \mathrm{ddd}, J 14.5,8$ and $8,4-\mathrm{H}), 2.68-2.86(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.53\left(2 \mathrm{H}, \mathrm{d}, J 7,6-\mathrm{H}_{2}\right), 5.55-5.68(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.82(1 \mathrm{H}$, ddd, $J 5.5,3.5$ and $2,1-\mathrm{H})$ and $6.02(1 \mathrm{H}$, ddd, $J 5.5,2$ and 1 , $2-\mathrm{H}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)-5.39\left(\mathrm{CH}_{3}, 2 \times \mathrm{Me}\right), 18.27\left(\mathrm{C}, \mathrm{Bu}^{\mathrm{r}}\right), 21.17$ $\left(\mathrm{CH}_{3}, \mathrm{AcO}\right), 25.86\left(\mathrm{CH}_{3}, \mathrm{Bu}^{\mathrm{t}}\right), 33.01\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 47.36(\mathrm{CH}$, $\mathrm{C}-5), 66.89\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 79.56(\mathrm{CH}, \mathrm{C}-3), 130.36(\mathrm{CH}, \mathrm{C}-1)$, $138.35(\mathrm{CH}, \mathrm{C}-2)$ and $170.72(\mathrm{C}, \mathrm{MeCO} 2) \mathrm{m} / \mathrm{z}(\mathrm{EI}) 271\left[\left(\mathrm{M}^{+}\right.\right.$ $+\mathrm{H}), 3 \%$], $211[(\mathrm{M}-\mathrm{Ac}), 97 \%]$.

Enzymic Resolution of (\pm)-3 3 -Acetoxy-5 $-($ tert-butyldimethylsiloxymethyl)cyclopentene 7.-A potassium phosphate buffer solution ($12.5 \mathrm{~cm}^{3} ; \mathrm{pH} 7$) was added dropwise to a vigorously stirred solution of (\pm)-3 3 -acetoxy- 5β-(tert-butyldimethylsiloxymethyl)cyclopentene $7(203.5 \mathrm{mg}, 0.75 \mathrm{mmol})$ in acetone ($2.5 \mathrm{~cm}^{3}$). PFL ($97.8 \mathrm{mg}, 1369$ units) was added and the mixture was stirred for 15 h . An extra aliquot ($98 \mathrm{mg}, 1369$ units) of lipase was added and the mixture was stirred for 5 h , whereupon 50% hydrolysis was observed by TLC and pH change (i.e. the volume of $0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{aq}$. sodium hydroxide required to neutralize the acetic acid formed during the reaction). The reaction mixture was extracted with diethyl ether $(4 \times 40$ cm^{3}) and the combined extracts were dried (anhydrous magnesium sulfate). The solids were removed by filtration and the filtrate was concentrated under reduced pressure. The residue (180 mg) was chromatographed over silica gel [(9:1) light petroleum-EtOAc]. The first compound to be eluted was ($3 R, 5 S$)-(-)-3-acetoxy-5-(tert-butyldimethylsiloxymethyl)cyclopentene $7(88.0 \mathrm{mg}, 43 \%), R_{\mathrm{f}} 0.38$, as an oil; $[\alpha]_{\mathrm{D}}^{25}-4.2$ (c $\left.1.8, \mathrm{CHCl}_{3}\right)\left(>95 \%\right.$ ee); IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical with those of the racemic compound. This was followed by ($1 S, 4 R$)-(+)-4-(tert-butyldimethylsiloxymethyl)-cyclopent-2-enol $6(71.8 \mathrm{mg}, 42 \%), R_{f} 0.14$, as a volatile liquid; $[\alpha]_{\mathrm{D}}^{25}+49.6\left(c 1.4, \mathrm{CHCl}_{3}\right)(>95 \%$ ee $) ;$ IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical with those of the racemic compound.

Standard Procedure for Bis-hydroxylation of Alkenes 3-7 using Osmium Tetraoxide.-A $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of osmium tetraoxide in butan- 1 -ol (0.01 mol equiv.) was added dropwise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the cyclopentene derivative in an acetone-water mixture ($10: 1 ; 0.5 \mathrm{~mol} \mathrm{dm}^{-3}$). NMO (1.1 mol equiv.) was added and the reaction mixture was allowed to warm up to room temperature. After the mixture had been stirred for 15 h , sodium metabisulfite (solid, 2-3 mol equiv.) was added and the mixture was stirred for an additional 10 min . The reaction mixture was diluted with acetone and then filtered through a Celite/silica plug. The residue was washed with acetone and the combined filtrate and washings were concentrated under reduced pressure. The residue was purified by chromatography on silica gel.

Standard Procedure for Preparation of the Isopropylidene Derivatives of cis-diols 8-11.-A solution of the diol in 2,2dimethoxypropane $\left(0.1-0.2 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ was stirred in the presence of a catalytic amount of PTSA ($\sim 0.1 \mathrm{~mol}$ equiv.) under nitrogen. Once the reaction was complete (TLC) the acid was neutralized with solid sodium hydrogen carbonate. The solids were removed by filtration and the residue was washed with dichloromethane. The combined filtrate and washings were concentrated under reduced pressure and the residue was purified by chromatography over silica gel.
(\pm)-4 3 -(Triphenylmethoxymethyl) cyclopentane- $1 \beta, 2 \alpha, 3 \alpha-$ triol 8.- \pm)-4 - -(Triphenylmethoxymethyl)cyclopent-2-en- 1β ol 4 ($256 \mathrm{mg}, 0.72 \mathrm{mmol}$) was bis-hydroxylated and worked up as described in the standard procedure. The residue (593 mg) was chromatographed over silica gel [(1:1), $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ EtOAc] to give $(\pm)-4 \beta$-(triphenylmethoxymethyl)cyclopentane$1 \beta, 2 \alpha, 3 \alpha$-triol $8(228 \mathrm{mg}, 81 \%), R_{\mathrm{f}} 0.11$, as a solid, m.p. 107$111^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3361,3060,2932,2865,1487,1219$, 1121, 1089 and $1060 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.33(1 \mathrm{H}$, ddd, $J 11.5,6.5$ and $6.5,5-\mathrm{H}), 2.08-2.32(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H})$, 3.06-3.25 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $3.70(1 \mathrm{H}, \mathrm{dd}, J 5$ and $5,2-\mathrm{H}$), 3.90 (1 H, dd, $J 5$ and $5,3-\mathrm{H}), 3.95-4.09(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $7.15-7.53$ (15 $\mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 34.12\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 44.24(\mathrm{CH}, \mathrm{C}-4)$, $66.58\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 74.72(\mathrm{CH}, \mathrm{C}-2), 76.74(\mathrm{CH}, \mathrm{C}-1), 79.70(\mathrm{CH}$, $\mathrm{C}-3), 87.74\left(\mathrm{C}, \mathrm{Ph}_{3} \mathrm{C}\right), 128.04(\mathrm{CH}, \mathrm{Ph}), 128.76$ (CH, Ph), 129.93 $(\mathrm{CH}, \mathrm{Ph})$ and $145.64(\mathrm{C}, \mathrm{Ph})$. The compound was further characterised as the triacetate, m.p. $138-139.5^{\circ} \mathrm{C}$ (Found: M^{+}, 516.2148 . $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{7}$ requires $M, 516.2148$).

(\pm)-4 $\mathbf{4 \beta}$-(tert-Butyldimethylsiloxymethyl)cyclopentane-

 $1 \beta, 2 \alpha, 3 \alpha$-triol 10, (\pm)-1 β-acetoxy-4 - -acetoxymethyl- $2 \alpha, 3 \alpha$-(isopropylidenedioxy)cyclopentane 12 and $(\pm)-4 \beta$-hydroxymethyl$2 \alpha, 3 \alpha$-(isopropylidenedioxy)cyclopentan- 1β-ol 19.-TThe (\pm)alkene $6(58.3 \mathrm{mg}, 0.26 \mathrm{mmol})$ was bis-hydroxylated and worked up as described in the standard procedure. The residue (103 mg) was chromatographed over silica gel [(10:1), $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right]$ to give (\pm)-4 $\mathbf{\beta}$-(tert-butyldimethylsiloxymethyl)cyclopentane$1 \beta, 2 \alpha, 3 \alpha$-triol $10(56.5 \mathrm{mg}, 84 \%), R_{\mathrm{f}} 0.2$ [$\left.\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)\right]$ as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3373,2933,2892,2860,1388,1359$, 1254 and $1101 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 0.08(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me})$, 0.92 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\text {t }}$), 1.31 (1 H , ddd, $J 12.5,7.5$ and $7,5-\mathrm{H}$), 1.95-2.20 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}$), 3.63-3.71 ($3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $6-\mathrm{H}_{2}$), 3.86 ($1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $5.5,3-\mathrm{H}$) and $3.93-4.03(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$; $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right)-5.15\left(\mathrm{CH}_{3}, 2 \times \mathrm{Me}\right), 19.22\left(\mathrm{C}, \mathrm{Bu}^{t}\right), 26.50$ $\left(\mathrm{CH}_{3}, \mathrm{Bu}^{\mathrm{t}}\right), 33.36\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 46.16(\mathrm{CH}, \mathrm{C}-4), 65.92\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-6), 74.19(\mathrm{CH}, \mathrm{C}-1), 76.82(\mathrm{CH}, \mathrm{C}-3)$ and $79.72(\mathrm{CH}, \mathrm{C}-2)$.The (\pm)-triol $10(50.1 \mathrm{mg}, 0.19 \mathrm{mmol})$ was dissolved in 2,2dimethoxypropane ($0.1 \mathrm{~cm}^{3}$) and PTSA (10 mg) was added. The reaction mixture was stirred at room temperature until TLC analysis showed complete reaction (ca. 3 h). After work-up in the standard fashion and chromatography over silica gel $\left[(9: 1), \mathrm{CHCl}_{3}-\mathrm{MeOH}\right](\pm)-4 \beta$-hydroxymethyl- $2 \alpha, 3 \alpha-$
(isopropylidenedioxy)cyclopentane-1 β-ol 19 ($29.0 \mathrm{mg}, 81 \%$), R_{f} 0.1 [$\left.\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)\right]$ was obtained as an oil. (Note that the tert-butyldimethylsilyl protecting group was lost under the reaction conditions.)

This diol 19 ($29.0 \mathrm{mg}, 0.15 \mathrm{mmol}$) was dissolved in dry dichloromethane $\left(0.5 \mathrm{~cm}^{3}\right)$ and treated with a mixture of acetic anhydride ($0.06 \mathrm{~cm}^{3}, 65.3 \mathrm{mg}, 0.64 \mathrm{mmol}$) and pyridine (0.06 $\left.\mathrm{cm}^{3}, 58.5 \mathrm{mg}, 0.74 \mathrm{mmol}\right)$ in the presence of DMAP $(5 \mathrm{mg})$ for 1 h. The solvent was removed by evaporation and the residue was chromatographed over silica gel [(4:1) light petroleumEtOAc $]$ to give $(\pm)-1 \beta$-acetoxy- 4β-acetoxymethyl- $2 \alpha, 3 \alpha$-(isopropylidenedioxy)cyclopentane $12(40.1 \mathrm{mg}, 96 \%), R_{\mathrm{f}} 0.15$, as an oil; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2989,2940,1739,1371,1234,1162$ and $1034 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26$ and 1.42 (each 3 H , each s, $\mathrm{Me}_{2} \mathrm{C}$), $1.54-1.64(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.05(3 \mathrm{H}, \mathrm{s}$, $\mathrm{AcO}), 2.26-2.55(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}), 4.02\left(2 \mathrm{H}, \mathrm{d}, J 7.5,6-\mathrm{H}_{2}\right)$, $4.50(2 \mathrm{H}, \mathrm{s}, 2$ - and $3-\mathrm{H})$ and $5.04(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and $5.5,1-\mathrm{H})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.81$ and $21.05\left(\mathrm{CH}_{3}, 2 \times \mathrm{MeCO}_{2}\right), 24.18$ and $26.55\left(\mathrm{CH}_{3}, \mathrm{Me}_{2} \mathrm{C}\right), 31.80\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 44.39(\mathrm{CH}, \mathrm{C}-4), 65.03$ $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 79.17(\mathrm{CH}, \mathrm{C}-1), 82.33(\mathrm{CH}, \mathrm{C}-2), 84.79(\mathrm{CH}, \mathrm{C}-3)$, $111.07\left(\mathrm{C}, \mathrm{Me}_{2} \mathrm{C}\right)$ and 169.78 and $170.82\left(\mathrm{C}, 2 \times \mathrm{MeCO}_{2}\right)$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 273.1338, \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $[M+\mathrm{H}]^{+}$, 273.1338).
(\pm)-3及-Acetoxy-5 pentane- $1 \alpha, 2 \alpha$-diol 11 and 1β-Acetoxy- 4β-(tert-butyldimethyl-siloxymethyl)- $2 \alpha, 3 \alpha$-(isopropylidenedioxy)cyclopentane 13.The (\pm)-alkene $7(119 \mathrm{mg}, 0.44 \mathrm{mmol})$ was bis-hydroxylated and worked up as described in the standard procedure. The residue (205 mg) was chromatographed on silica gel [(9:1), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone] to give (\pm)-3 3 -acetoxy- 5β-(tert-butyldi-methylsiloxymethyl)cyclopentane- $1 \alpha, 2 \alpha$-diol 11 ($128 \mathrm{mg}, 96 \%$), $R_{\mathrm{f}} 0.17$, as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3423,2957,2935,2895$, 2861, 1736, 1373, 1253, 1105 and 1031; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.03(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 0.83\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right), 1.34(1 \mathrm{H}$, ddd, $J 13.5,6$ and 8, 4-H), $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.05-2.17(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.26(1$ H , ddd, $J 13.5,8.5$ and $8.5,4-\mathrm{H}$), $3.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.54(1 \mathrm{H}$, dd, $J 5.5$ and $10,6-\mathrm{H}), 3.62-3.74(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and OH$), 3.89(2$ $\mathrm{H}, \mathrm{s}, 1-\mathrm{and} 2-\mathrm{H})$ and $4.84-4.95(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ -5.57 and $-5.53\left(\mathrm{CH}_{3}, 2 \times \mathrm{Me}\right), 18.17\left(\mathrm{C}, \mathrm{Bu}^{\prime}\right), 20.98\left(\mathrm{CH}_{3}\right.$, $\mathrm{AcO}), 25.83\left(\mathrm{CH}_{3}, \mathrm{Bu}^{1}\right), 29.42\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 44.51(\mathrm{CH}, \mathrm{C}-5)$, $64.31\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 74.08(\mathrm{CH}, \mathrm{C}-1), 76.62(\mathrm{CH}, \mathrm{C}-2), 79.41(\mathrm{CH}$, $\mathrm{C}-3)$ and $171.48(\mathrm{C}, \mathrm{MeCO} 2)$.

The isopropylidene derivative 13 of the diol $11(124 \mathrm{mg}$, 0.41 mmol) was prepared and worked up as described in the standard procedure. The residue (141 mg) was chromatographed on silica gel [(3:1) light petroleum-EtOAc] to give (\pm)-1 β-acetoxy- 4β-(tert-butyldimethylsiloxymethyl)- $2 \alpha, 3 \alpha$-(isopropylidenedioxy) cyclopentane 13 ($125 \mathrm{mg}, 89 \%$), $R_{\mathrm{f}} 0.49$, as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2935,2893,2861,1746,1374,1238,1211$, 1162,1093 and $1044 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.03(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{Me}), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.24$ and 1.41 (each 3 H , each s, $\mathrm{Me}_{2} \mathrm{C}$), $1.53-1.68(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.18-2.31$ (2 $\mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}), 3.50(1 \mathrm{H}, \mathrm{dd}, J 6.5$ and $10.5,6-\mathrm{H}), 3.57(1 \mathrm{H}$, dd, $J 7$ and $10,6-\mathrm{H})$, $3.42(1 \mathrm{H}$, br d, $J 6,2-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 5.5,3-\mathrm{H})$ and $4.96-5.06(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)-5.46$ and $-5.43\left(\mathrm{CH}_{3}, 2 \times \mathrm{Me}\right), 18.23\left(\mathrm{C}, \mathrm{Bu}^{\mathrm{t}}\right), 21.00\left(\mathrm{CH}_{3}, \mathrm{MeCO}_{2}\right)$, $24.35\left(\mathrm{CH}_{3}, \mathrm{Me}_{\mathrm{A}} \mathrm{C}\right), 25.84\left(\mathrm{CH}_{3}, \mathrm{Bu}^{\mathrm{t}}\right), 26.75\left(\mathrm{CH}_{3}, \mathrm{Me}_{\mathrm{B}} \mathrm{C}\right)$, $31.58\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 47.21(\mathrm{CH}, \mathrm{C}-4), 63.67\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 79.68(\mathrm{CH}$, $\mathrm{C}-1), 81.74(\mathrm{CH}, \mathrm{C}-3), 84.87(\mathrm{CH}, \mathrm{C}-2), 110.98\left(\mathrm{C}, \mathrm{Me}_{2} \mathrm{C}\right)$ and $169.80\left(\mathrm{C}, \mathrm{MeCO}_{2}\right)$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 345.2097$. $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}$ requires $[M+\mathrm{H}]^{+}, 345.2097$).
($1 \alpha, 2 \alpha, 3 \beta, 5 \beta)-(\pm)$ and (1R,2R,3R,5S)-(-)-3-Acetoxy-5-(tri-phenylmethoxymethyl)cyclopentane-1,2-diol \quad 9.- $(\pm)-3 \beta-$ Acetoxy-5 5 -(triphenylmethoxymethyl)cyclopentene $5(1.66 \mathrm{~g}$, 4.2 mmol) was bis-hydroxylated and worked up as described in the standard procedure. The residue was purified by chromato-
graphy over silica gel [(9:1), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone] to give (\pm)-3 β -acetoxy- 5β-(triphenylmethoxymethyl) cyclopentane-1 $\alpha, 2 \alpha$-diol $9(1.60 \mathrm{~g}, 89 \%), R_{\mathrm{f}} 0.28$, as a foam, m.p. $37-41^{\circ} \mathrm{C}$.
($1 R, 2 R, 3 R, 5 S$)-(-)-3-Acetoxy-5-(triphenylmethoxymethyl)-cyclopentane-1,2-diol was synthesized from ($3 R, 5 S$)-(-)-3-acetoxy-5-(triphenylmethoxymethyl)cyclopentene in an identical manner; m.p. $37-41^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-13.8$ (c 1.0, CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3423,3061,2928,1729,1489,1372,1245,1070$ and 1032; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.35-1.46(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.05$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}$), 2.26-2.47 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}), 2.86(1 \mathrm{H}$, br s, $\mathrm{OH}), 3.14(1 \mathrm{H}, \mathrm{dd}, J 6.5$ and $9,6-\mathrm{H}), 3.23-3.37(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $\mathrm{OH}), 3.93-4.04(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 2-\mathrm{H}), 4.90-5.02(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, 7.21-7.37 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.40-7.55 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 21.04\left(\mathrm{CH}_{3}, \mathrm{MeCO} 2\right), 30.25\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 42.92(\mathrm{CH}$, $\mathrm{C}-5), 65.28\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 74.81(\mathrm{CH}, \mathrm{C}-2), 76.87(\mathrm{CH}, \mathrm{C}-1), 79.91$ (CH, C-3), $86.88\left(\mathrm{C}, \mathrm{Ph}_{3} \mathrm{C}\right), 127.11(\mathrm{CH}, \mathrm{Ph}), 127.88(\mathrm{CH}, \mathrm{Ph})$, $128.69(\mathrm{CH}, \mathrm{Ph}), 143.92(\mathrm{C}, \mathrm{Ph})$ and $171.72\left(\mathrm{C}, \mathrm{MeCO}_{2}\right)$.
$(1 \beta, 2 \alpha, 3 \alpha, 4 \beta)-(\pm)$ and $(1 R, 2 S, 3 R, 4 R)-(-)-2,3-$ Isopropyl-idenedioxy-4-(triphenylmethoxymethyl)cyclopentan-1-ol 15.The isopropylidene derivative of the (\pm)-diol $9(2.58 \mathrm{~g}, 5.97$ mmol) was synthesized as described in the standard procedure. The residue (2.40 g) was purified by chromatography over silica gel [(3:1) light petroleum-EtOAc] to give (\pm)-1 β-acetoxy- 2α,3α-isopropylidenedioxy- 4β-(triphenylmethoxymethyl)cyclopentane ($2.31 \mathrm{~g}, 82 \%$), $R_{\mathrm{f}} 0.41$, as a foam. $\{(1 \mathrm{R}, 2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{R})-(-)-1-$ Acetoxy-2,3-isopropylidenedioxy-4-(triphenylmethoxymethyl)cyclopentane was synthesized from $(1 R, 2 R, 3 R, 5 S)-(-)-3-$ acetoxy-5-(triphenylmethoxymethyl)cyclopentane-1,2-diol in an identical procedure; $[\alpha]_{\mathrm{D}}^{24}-28.6$ (c 0.99 in CHCl_{3}) ; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3063,2987,2938,1738,1490,1374,1240,1159$ and $1043 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29$ and 1.47 (each 3 H , each $\mathrm{s}, \mathrm{Me}_{2} \mathrm{C}$), $1.60-1.74(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.79(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO})$, $2.37(1 \mathrm{H}$, ddd, $J 14,6$ and $7.5,5-\mathrm{H}), 2.50-2.66(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $3.09\left(2 \mathrm{H}, \mathrm{d}, J 7.5,6-\mathrm{H}_{2}\right), 4.35(1 \mathrm{H}, \mathrm{d}, J 6,2-\mathrm{H}), 4.51(1 \mathrm{H}, \mathrm{d}$, $J 6,3-\mathrm{H}), 4.59-5.04(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $7.18-7.58(15 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.98\left(\mathrm{CH}_{3}, \mathrm{Me} \mathrm{CO}_{2}\right), 24.32$ and 26.70 $\left(\mathrm{CH}_{3}, \mathrm{Me}_{2} \mathrm{C}\right), 32.05\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 45.44(\mathrm{CH}, \mathrm{C}-4), 64.53\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-6), 79.56(\mathrm{CH}, \mathrm{C}-1), 82.56(\mathrm{CH}, \mathrm{C}-2), 84.79(\mathrm{CH}, \mathrm{C}-3)$, $86.58\left(\mathrm{C}, \mathrm{Ph}_{3} \mathrm{C}\right), 110.84\left(\mathrm{C}, \mathrm{Me}_{2} \mathrm{C}\right), 126.98(\mathrm{CH}, \mathrm{Ph}), 127.78$ $(\mathrm{CH}, \mathrm{Ph}), 128.72(\mathrm{CH}, \mathrm{Ph}), 144.17(\mathrm{C}, \mathrm{Ph})$ and 169.83 $\left(\mathrm{C}, \mathrm{MeCO} 2\right.$). (Found: $\mathrm{M}^{+}, 472.2250 . \mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{5}$ requires M^{+}, 472.2250).

Sodium methoxide ($42.0 \mathrm{mg}, 0.78 \mathrm{mmol}$) was added to a solution of the above (\pm)-acetate ($2.31 \mathrm{~g}, 4.89 \mathrm{mmol}$) in methanol ($29 \mathrm{~cm}^{3}$). After the mixture had been stirred for 3.5 h , the solvent was removed by evaporation and the residue (2.40 g) was chromatographed over silica gel [(3:1) light petroleumEtOAc] to give (\pm)-2 $\alpha, 3 \alpha$-isopropylidenedioxy-4 β-(triphenyl-methoxymethyl)cyclopentane-1 β-ol $15(2.02 \mathrm{~g}, 96 \%), R_{\mathrm{f}} 0.19$, as a hygroscopic foam.
($1 \mathrm{R}, 2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{R}$)-(-)-2,3-Isopropylidenedioxy-4-(triphenylmethoxymethyl)cyclopentanol was synthesized from ($1 R, 2 S$,$3 R, 4 R$)-(-)-1-acetoxy-2,3-isopropylidenedioxy-4-(triphenylmethoxymethyl)cyclopentane by an identical procedure; $[\alpha]_{\mathrm{D}}^{27}$ $-13.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3450,3063,3031,2988$, $2935,1489,1375,1261,1210,1157$ and $1037 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.30$ and $1.42\left(\right.$ each 3 H , each s, $\left.\mathrm{Me}_{2} \mathrm{C}\right), 1.48-1.66(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 2.26-2.45(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 6.5$, $\mathrm{OH}), 3.21(1 \mathrm{H}, \mathrm{dd}, J 5$ and $9.5,6-\mathrm{H}), 3.37(1 \mathrm{H}, \mathrm{dd}, J 5$ and $9.5,6-$ H), $4.08-4.18(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.42(1 \mathrm{H}, \mathrm{d}, J 6,2-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{d}, J$ 6, 3-H), 7.18-7.37 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.40-7.53 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 24.36$ and $26.80\left(\mathrm{CH}_{3}, \mathrm{Me} 2 \mathrm{C}\right), 35.48\left(\mathrm{CH}_{2}, \mathrm{C}-5\right)$, 45.72 (CH, C-4), $65.35\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 77.18$ (CH, C-1), $83.31(\mathrm{CH}$, $\mathrm{C}-2), 87.54\left(\mathrm{C}, \mathrm{Ph}_{3} \mathrm{C}\right), 87.75(\mathrm{CH}, \mathrm{C}-3), 110.34\left(\mathrm{C}, \mathrm{Me}_{2} \mathrm{C}\right)$, $127.19(\mathrm{CH}, \mathrm{Ph}), 127.90(\mathrm{CH}, \mathrm{Ph}), 128.79(\mathrm{CH}, \mathrm{Ph})$ and 143.56 (C, Ph) (Found: $\mathrm{M}^{+}, 430.2144 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{4}$ requires M^{+}, 430.2144).
(1S,2S,3R,4R)-(+)-4-(Hydroxymethyl)cyclopentane-1,2,3-triol-(pseudo- α-Ribofuranose) (+)-1.-A solution of the (\pm) alcohol 15 ($293 \mathrm{mg}, 0.68 \mathrm{mmol}$) in dry dichloromethane ($3 \mathrm{~cm}^{3}$) was added to a mixture of PCC ($366 \mathrm{mg}, 1.70 \mathrm{mmol}$) and powdered $4 \AA$ molecular sieves (510 mg) under argon. After the mixture had been stirred for 1 h at room temp., diethyl ether (3 cm^{3}) was added and the solids were removed by filtration through a Celite/silica plug. The solids were washed with diethyl ether and the combined filtrate and washings were concentrated under reduced pressure. The crude ketone (\pm)-16 ($267 \mathrm{mg}, 91 \%$) was used without further purification; however, it can be purified by chromatography over silica gel [(3:1) light petroleum-EtOAc] to give $(\pm)-2 \alpha, 3 \alpha$-isopropylidenedioxy- 4β (triphenylme thoxymethyl) cyclopentanone $16\left(R_{\mathrm{f}} 0.36\right)$ as a solid, m.p. $175-178{ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 2986,2959,2925,1752$, 1491, 1377, 1264, 1218, 1152 and 1064; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.32 and 1.43 (each 3 H , each s, $\mathrm{Me}_{2} \mathrm{C}$), $2.24(1 \mathrm{H}, \mathrm{dd}, J 1$ and $18.5,5-\mathrm{H}), 2.50-2.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.80(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 18.5 , $5-\mathrm{H}), 3.23-3.35\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 4.39(1 \mathrm{H}, J 5.5,2-\mathrm{H}), 4.45(1 \mathrm{H}$, $\mathrm{d}, J 5.5,3-\mathrm{H})$ and $7.18-7.42(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 24.71$ and $26.81\left(\mathrm{CH}_{3}, \mathrm{Me}_{2} \mathrm{C}\right), 37.61\left(\mathrm{CH}_{2}, \mathrm{C}-5\right.$ and $\left.\mathrm{CH}, \mathrm{C}-4\right), 64.88$ $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 79.07(\mathrm{C}-2), 81.48(\mathrm{CH}, \mathrm{C}-3), 87.77\left(\mathrm{C}, \mathrm{Ph}_{3} \mathrm{C}\right)$, 111.40 (C) $\mathrm{Me}_{2} \mathrm{C}$), 127.24 (CH, Ph), 127.96 (CH, Ph), 128.64 (CH, Ph), $143.43(\mathrm{C}, \mathrm{Ph})$ and 213.52 (C, C-1) (Found: C, 78.1; $\mathrm{H}, 6.5 . \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 78.5 ; \mathrm{H}, 6.6$. Found: $[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}, \quad 446.2331 . \quad \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\left[M+\mathrm{NH}_{4}\right]^{+}$, 446.2331).

The crude ketone (\pm)-16 (267 mg) was dissolved in 90% aq. ethanol $\left(6 \mathrm{~cm}^{3}\right)$ and cooled to $0^{\circ} \mathrm{C}$. Sodium borohydride (368 $\mathrm{mg}, 1.80 \mathrm{mmol}$) was added and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. Saturated aq. ammonium chloride was added dropwise until the effervescence had ceased and the solvent was then removed by evaporation. The residue was redissolved in chloroform ($10 \mathrm{~cm}^{3}$) and washed with water ($5 \mathrm{~cm}^{3}$). The organic phase was concentrated under reduced pressure (336 $\mathrm{mg})$ and was purified by chromatography over silica gel [(4:1) light petroleum-EtOAc] to give (\pm) - $2 \alpha, 3 \alpha$-isopropylidenedi-oxy- 4β-(triphenylmethoxymethyl)cyclopentan-1 α-ol (235 mg , 80%), $R_{\mathrm{f}} 0.16$, as a foam, m.p. $40-46{ }^{\circ} \mathrm{C}$
(1S,2S,3R,4R)-(-)-2,3-Isopropylidenedioxy-4-(triphenylmethoxymethyl)cyclopentanol was synthesized from the corresponding ($1 R, 2 S, 3 R, 4 R)$-(-)-2,3-isopropylidenedioxy-4-(triphenylmethoxymethyl)cyclopentanol (-)-15 in an identical procedure; $[\alpha]_{\mathrm{D}}^{25}-9.7$ (c 1.1, CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3460$, 3060, 3028, 2989, 2938, 1488, 1377, 1258, 1208, 1157, 1075 and $1035 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.34$ and 1.53 (each 3 H , each s, $\left.\mathrm{Me}_{2} \mathrm{C}\right), 1.81-2.01\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 2.32-2.45(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.50(1$ $\mathrm{H}, \mathrm{d}, J 8.5, \mathrm{OH}), 3.05(1 \mathrm{H}, \mathrm{dd}, J 6$ and $9.5,6-\mathrm{H}), 3.11(1 \mathrm{H}$, dd, $J 6.5$ and $9.5,6-\mathrm{H}), 4.10-4.26(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.42-4.51(2 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}), 7.21-7.37(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.42-7.54$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 24.40$ and $26.23\left(\mathrm{CH}_{3}, \mathrm{Me}_{2} \mathrm{C}\right)$, $25.38\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 42.26(\mathrm{CH}, \mathrm{C}-4), 64.52\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 71.75(\mathrm{CH}$, $\mathrm{C}-1), 79.58(\mathrm{CH}, \mathrm{C}-2), 82.91(\mathrm{CH}, \mathrm{C}-3), 86.94\left(\mathrm{C}, \mathrm{Ph}_{3} \mathrm{C}\right), 111.28$ (C, $\left.\mathrm{Me}_{2} \mathrm{C}\right), 127.09(\mathrm{CH}, \mathrm{Ph}), 127.87(\mathrm{CH}, \mathrm{Ph}), 128.72(\mathrm{CH}$, Ph) and $143.97(\mathrm{C}, \mathrm{Ph})$ (Found: $\left[\mathrm{M}-\mathrm{CPh}_{3}\right]^{+}, 187.0970$. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\left.\left[\mathrm{M}-\mathrm{CPh}_{3}\right]^{+}, 187.0970\right)$.
A solution of the (-)-alcohol ($262 \mathrm{mg}, 0.61 \mathrm{mmol}$) in 80% aq. acetic acid ($10 \mathrm{~cm}^{3}$) was heated at $80^{\circ} \mathrm{C}$ for 30 min . The solvent was removed by evaporation and the residue of crude ($1 S, 2 S, 3 R, 4 R$)-4-hydroxymethyl-2,3-(isopropylidenedioxy)cyclopentanol was redissolved in a THF-water mixture ($1: 1 ; 9$ cm^{3}). Amberlyst $15\left(\mathrm{H}^{+}\right)$ion-exchange resin (110.3 mg) was added and the mixture was heated for 15 h at $60^{\circ} \mathrm{C}$. The resin was removed by filtration and was then washed with methanol. The combined filtrate and washings were concentrated under reduced pressure. The residue was chromatographed on silica gel $\left[(3: 1) \quad \mathrm{CHCl}_{3}-\mathrm{MeOH}\right]$ to give $(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{R})-(+)-4-$ (hydroxymethyl) cyclopentane-1,2,3-triol (+)-1 ($69.6 \mathrm{mg}, 77 \%$),
$R_{\mathrm{f}} 0.14$, as an oil; $[\alpha]_{\mathrm{D}}^{27}+46.4$ (c $\left.0.80, \mathrm{MeOH}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3344,2931,1331,1107$ and $1020 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.60(1 \mathrm{H}$, ddd, $J 14,6.5$ and $7.5,5-\mathrm{H}), 1.92(1 \mathrm{H}$, ddd, $J 14,4$ and $10,5-\mathrm{H}), 2.24-2.38(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.54(2 \mathrm{H}, \mathrm{d}, J$ $\left.5.5, \mathrm{CH}_{2}\right), 3.83-3.94(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 3-\mathrm{H})$ and $4.06-4.15(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 33.79\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 47.7(\mathrm{CH}, \mathrm{C}-4), 64.71$ $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 73.74(\mathrm{CH}, \mathrm{C}-1), 75.26(\mathrm{CH}, \mathrm{C}-2)$ and $75.39(\mathrm{CH}$, C -3). (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 166.1079. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\left.\left[M+\mathrm{NH}_{4}\right]^{+}, 166.1079\right)$.
($1 \alpha, 2 \alpha, 3 \beta, 5 \beta)-(\pm)$ - and (1S,2S,3S,5R)-3-(tert-Butyldimethyl-siloxy)-5-(tert-butyldimethylsiloxymethyl)cyclopentane-1,2-diol 14 and (1S,2R,3S,4S)-(-)-4-(hydroxymethyl)cyclopentane-1,2,3-triol (-)-2.-tert-Butyldimethylsilyl chloride (7.39 g, $0.049 \mathrm{~mol})$, imidazole ($6.66 \mathrm{~g}, 0.1 \mathrm{~mol}$) and DMAP $(80 \mathrm{mg})$ were added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the diol $3^{3}(1.86 \mathrm{~g})$ in dry dichloromethane ($100 \mathrm{~cm}^{3}$). After being stirred for 1 h at $0^{\circ} \mathrm{C}$, the solids were removed by filtration and the residue was washed with dichloromethane. The combined filtrate and washings were concentrated under reduced pressure and the residue was chromatographed over silica gel [(2:1) light petroleum $\left.\left(40-60^{\circ} \mathrm{C}\right)-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right]$ to give $(\pm)-3 \beta$-(tert-butyl-dimethylsiloxy)-5 5 -(tert-butyldimethylsiloxymethyl)cyclopentene ($5.48 \mathrm{~g}, 98 \%$), $R_{\mathrm{f}} 0.39$, as an oil.
[(3S,5R)-(+)-3-(tert-Butyldimethylsiloxy)-5-(tert-butyldimethylsiloxymethyl)cyclopentene was synthesized from $(1 S, 4 R)-(+)$-4-(hydroxymethyl)cyclopent-2-enol (+)-3 in an identical procedure; $[\alpha]_{\mathrm{D}}^{26}+14.2$ (c $\left.\left.2.0, \mathrm{CHCl}_{3}\right)\right] ; v_{\max }{ }^{-}$ (neat) $/ \mathrm{cm}^{-1} 2958,2933,2891,2860,1603,1364,1251,1051$ and $1082 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05$ and $0.10(12 \mathrm{H}, 2 \times \mathrm{s}$, $4 \times \mathrm{Me}), 0.92\left(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Bu}^{t}\right), 1.34(1 \mathrm{H}$, ddd, $J 13.5,5.5$ and $5.5,4-\mathrm{H}), 2.29(1 \mathrm{H}$, ddd, J 13.5, 7.5 and $7.5,4-\mathrm{H}$), 2.65-2.78 (1 $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.50\left(2 \mathrm{H}, \mathrm{d}, J 7,6-\mathrm{H}_{2}\right), 4.60-4.89(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.75$ $(1 \mathrm{H}, \mathrm{ddd}, J 5.5,2$ and $2,1-\mathrm{H})$ and $5.86(1 \mathrm{H}, \mathrm{d}, J 5.5,2-\mathrm{H})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.31$ and $-4.58\left(\mathrm{CH}_{3}, 4 \times \mathrm{Me}\right), 18.16$ and $18.34\left(\mathrm{C}, 2 \times \mathrm{Bu}^{\mathrm{r}}\right), 25.94\left(\mathrm{CH}_{3}, 2 \times \mathrm{Bu}^{\mathrm{r}}\right), 37.30\left(\mathrm{CH}_{2}, \mathrm{C}-4\right)$, 47.36 (CH, C-5), $67.67\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 77.29(\mathrm{CH}, \mathrm{C}-3), 134.46(\mathrm{CH}$, $\mathrm{C}-1)$ and 135.07 ($\mathrm{CH}, \mathrm{C}-2$).
The (\pm)-alkene ($550 \mathrm{mg}, 1.60 \mathrm{mmol}$) was bis-hydroxylated and worked up as described in the standard procedure. The residue (761 mg) was purified by chromatography on silica gel ($2 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give (\pm) - 3β-(tert-butyldimethylsil-oxy)-5 5 -(tert-butyldimethylsiloxymethyl)cyclopentane-1,2-diol $14(567 \mathrm{mg}, 94 \%), R_{\mathrm{f}} 0.16$, as a solid, m.p. $51-52^{\circ} \mathrm{C}$. $\{(1 S, 2 S, 3 S, 5 R)-(+)$-3-(tert-Butyldimethylsiloxy)-5-(tert-butyl-dimethylsiloxymethyl)cyclopentane-1,2-diol (+)-14 was synthesized from ($3 S, 5 R$)-(+)-3-(tert-butyldimethylsiloxy)-5-(tertbutyldimethylsiloxymethyl)cyclopentene in an identical procedure; m.p. $41-43^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}+18.9$ (c 1.2, CHCl_{3}) and $\left.[\alpha]_{\mathrm{D}}^{24}+16.9\left(c 1.0, \mathrm{CHCl}_{3}\right)\right\} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3554,2955$, 2933, 2893, 2859, 1386, 1250 and $1061 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.03 and $0.05(12 \mathrm{H}, 2 \times \mathrm{s}, 4 \times \mathrm{Me}), 0.84$ and $0.90(18 \mathrm{H}, 2 \mathrm{~s}$, $\left.2 \times \mathrm{Bu}^{t}\right), 1.09-1.23(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.99-2.23(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and}$ $5-\mathrm{H}), 2.73(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.86(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.57(1 \mathrm{H}, \mathrm{dd}, J 8$ and 9.5, 6-H), 3.70-3.83 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 6-\mathrm{H})$ and $3.96-4.09(2 \mathrm{H}, \mathrm{m}$, 1- and $2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.54,-5.48$ and $-4.83\left(\mathrm{CH}_{3}\right.$, $4 \times \mathrm{Me}), 17.94$ and $18.20\left(\mathrm{C}, 2 \times \mathrm{Bu}^{\mathrm{r}}\right), 25.77$ and $25.89\left(\mathrm{CH}_{3}\right.$, $\left.2 \times \mathrm{Bu}^{\prime}\right), 33.48\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 44.47(\mathrm{CH}, \mathrm{C}-5), 66.41\left(\mathrm{CH}_{2}, \mathrm{C}-6\right)$, $76.03(\mathrm{CH}, \mathrm{C}-2), 76.61(\mathrm{CH}, \mathrm{C}-3)$ and $79.02(\mathrm{CH}, \mathrm{C}-1)$.

TBAF ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in THF; $1.2 \mathrm{~cm}^{3}, 1.20 \mathrm{mmol}$) was added to a solution of ($1 S, 2 S, 3 S, 5 R$)-(+)-3-(tert-butyldi-methylsiloxy)-5-(tert-butyldimethylsiloxymethyl)cyclopentane-1,2-diol 14 ($101 \mathrm{mg}, 0.27 \mathrm{mmol}$) in dry THF ($7 \mathrm{~cm}^{3}$). After being stirred for 2 h under argon, the solvent was removed by evaporation and the residue was redissolved in dry dichloromethane ($1 \mathrm{~cm}^{3}$). Acetic anhydride $\left(0.5 \mathrm{~cm}^{3}, 541 \mathrm{mg}, 5.30\right.$ mmol), pyridine ($0.5 \mathrm{~cm}^{3}, 490 \mathrm{mg}, 6.2 \mathrm{mmol}$) and DMAP (~ 5 mg) were added and the mixture was stirred for 1 h . The solvent
was removed by evaporation and the residue (817 mg) was chromatographed on silica gel ($2 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give (1S,2R,3S,4S)-(+)-1,2,3-triacetoxy-4-(acetoxymethyl)cyclopentane $(84.4 \mathrm{mg}, 99 \%), R_{\mathrm{f}} 0.18$ as an oil; $[\alpha]_{\mathrm{D}}^{23}+5.3(c 0.79$, $\left.\mathrm{CHCl}_{3}\right)\left\{\right.$ lit., $^{2}[\alpha]_{\mathrm{D}}^{21}-5.3$ (c $0.79, \mathrm{CHCl}_{3}$) for the opposite enantiomer\}, $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2956,1737,1369,1222$ and 1043; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26-1.42(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.98$, 2.00 and $2.01(12 \mathrm{H}, 3 \times \mathrm{s}, 4 \times \mathrm{AcO}), 2.37-2.53(2 \mathrm{H}, \mathrm{m}, 4$ - and $5-\mathrm{H}), 4.06\left(2 \mathrm{H}, \mathrm{d}, J 5.5,6-\mathrm{H}_{2}\right), 5.04-5.13(2 \mathrm{H}, \mathrm{m}, 1-$ and $2-\mathrm{H})$ and $5.17(1 \mathrm{H}$, dd, $J 5$ and $5,3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.48,20.53$, 20.63 and $20.80\left(\mathrm{CH}_{3}, 4 \times \mathrm{MeCO}_{2}\right), 30.02\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 39.63$ ($\mathrm{CH}, \mathrm{C}-4$), $64.48\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 72.79(\mathrm{CH}, \mathrm{C}-2), 75.01(\mathrm{CH}, \mathrm{C}-3)$, $75.29(\mathrm{CH}, \mathrm{C}-1)$ and $169.60,169.88,170.06$ and $170.75(\mathrm{C}$, $\mathrm{MeCO}{ }_{2}$) (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 334.1502. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{8}$ requires $\left.\left[M+\mathrm{NH}_{4}\right]^{+}, 334.1502\right)$.

The tetra-acetate $(67.0 \mathrm{mg}, 0.21 \mathrm{mmol})$ was dissolved in methanol ($6.2 \mathrm{~cm}^{3}$), and the solution was cooled to $0^{\circ} \mathrm{C}$ and treated with sodium methoxide ($33.3 \mathrm{mg}, 0.62 \mathrm{mmol}$). The mixture was stirred for 3.5 h at $0^{\circ} \mathrm{C}$ and then neutralized with Amberlite IR-120 (H^{+}) ion-exchange resin. The resin was removed by filtration and then washed with methanol. The combined filtrate and washing were concentrated under reduced pressure. The residue (85.3 mg) was chromatographed on silica gel $\left[(3: 1) \mathrm{CHCl}_{3}-\mathrm{MeOH}\right]$ to give ($1 \mathrm{~S}, 2 \mathrm{R}, 3 \mathrm{~S}, 4 \mathrm{~S}$)-(-)-(hydroxymethyl)cyclopentane-1,2,3-triol (-)-2 ($28.2 \mathrm{mg}, 90 \%$), $R_{\mathrm{f}} 0.18$, as a solid;* m.p. $124-127^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{26}-10.55$ (c 1.0 , $\mathrm{MeOH})\left\{\right.$ lit., ${ }^{6}[\alpha]_{\mathrm{D}}^{23}+8.8$ (c $2.9, \mathrm{MeOH}$) for the opposite enantiomer \}; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3369$, 2933, 1341, 1118 and $1039 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.24(1 \mathrm{H}$, ddd, $J 13.5,6.5$ and 8, 5-H), 1.96-2.13 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $2.20(1 \mathrm{H}$, ddd, $J 13.5,7$ and 9 , $5-\mathrm{H}), 3.54(1 \mathrm{H}, \mathrm{dd}, J 6.5$ and $10.5,6-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $10.5,6-\mathrm{H}), 3.69(1 \mathrm{H}$, dd, $J 5$ and $5,3-\mathrm{H}$), $3.86(1 \mathrm{H}$, dd, $J 5.5$, $2-\mathrm{H})$ and $3.99(1 \mathrm{H}$, ddd, $J 5,7$ and $7,1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 35.74$ $\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 46.13(\mathrm{CH}, \mathrm{C}-4), 65.37\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 74.66(\mathrm{CH}, \mathrm{C}-2)$, $76.80(\mathrm{CH}, \mathrm{C}-1)$ and $79.70(\mathrm{CH}, \mathrm{C}-3)$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 166.1079. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\left[M+\mathrm{NH}_{4}\right]^{+}, 166.1079$).
($1 \alpha, 2 \alpha, 3 \alpha, 4 \beta)-(\pm)-4-($ Hydroxymethyl $)\left(1-{ }^{2} \mathrm{H}\right)$ cyclopentane-1,2,3-triol 17.-tert-Butyldiphenylsilyl chloride ($0.26 \mathrm{~cm}^{3}, 275$ $\mathrm{mg}, 1.0 \mathrm{mmol}$), imidazole ($146 \mathrm{mg}, 2.15 \mathrm{mmol}$) and DMAP ($\sim 10 \mathrm{mg}$) were added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the (\pm)-diol $19(183 \mathrm{mg}, 0.97 \mathrm{mmol})$ in dry dichloromethane ($14 \mathrm{~cm}^{3}$) under argon. After 30 min , solids were removed by filtration and washed with dichloromethane. The combined filtrate and washings were concentrated under reduced pressure and the residue was purified by chromatography over silica gel [$3: 1$) light petroleum-EtOAc] to give (\pm)-4 β-(tert-butyldiphenyl-siloxymethyl)- $2 \alpha, 3 \alpha$-(isopropylidenedioxy)cyclopentan-1 β-ol $(250 \mathrm{mg})$.

This silyl ether (2.78 g) was oxidized with PCC $(4.73 \mathrm{~g}, 21.9$ mmol) in the presence of $4 \AA$ molecular sieves (3.71 g) as described above. After the mixture had been stirred for 15 min under argon, diethyl ether $\left(260 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was filtered through a Celite/silica plug. The filtrate was concentrated under reduced pressure to give crude 4β-(tert-butyldiphenylsiloxymethyl)-2 $2,3 \alpha$-(isopropylidenedioxy)cyclopentanone $(2.33 \mathrm{~g})$ as an oil.

The crude ketone (2.33 g) was dissolved in 90% aq. ethanol ($96 \mathrm{~cm}^{3}$) and the solution was cooled to $0^{\circ} \mathrm{C}$. Sodium borodeuteride ($770 \mathrm{mg}, 0.018 \mathrm{~mol}$) was added slowly and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. Saturated aq. ammonium chloride was added dropwise until the effervescence had ceased and the solvent was then removed by evaporation. The residue was redissolved in chloroform ($50 \mathrm{~cm}^{3}$) and the solution was

[^0]washed with water $\left(50 \mathrm{~cm}^{3}\right)$. The organic phase was concentrated under reduced pressure and the residue (3.23 g) was chromatographed over silica gel [(3:1) light petroleumEtOAc] to give $(\pm)-4 \beta$-(tert-butyldiphenylsiloxymethyl)$1,2 \alpha, 3 \alpha$-(isopropylidenedioxy) $\left(1-{ }^{-2} \mathrm{H}\right)$ cyclopentan- $1 \alpha-$ ol $(2.47 \mathrm{~g}$, 89%), $R_{f} 0.3 ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3539,3074,2936,2862,1378$, 1251, 1211, 1160, 1109 and 1042; $\delta_{\mathbf{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.11$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), 1.40 and 1.55 (each 3 H , each s, $\mathrm{Me}_{2} \mathrm{C}$), 1.89-1.99 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), $2.24-2.38(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.58(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.56$ $(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $10.5,6-\mathrm{H}), 3.65(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $10.5,6-\mathrm{H})$, $4.47(1 \mathrm{H}, \mathrm{d}, J 6,2-\mathrm{H}), 5.54(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $6,3-\mathrm{H}), 7.34-7.53$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.63-7.76 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.20$ $\left(\mathrm{C}, \mathrm{Bu}^{i}\right), 24.31$ and $26.19\left(\mathrm{CH}_{3}, \mathrm{Me}_{2} \mathrm{C}\right), 26.93\left(\mathrm{CH}_{3}, \mathrm{Bu}^{i}\right), 35.23$ $\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 44.04(\mathrm{CH}, \mathrm{C}-4), 65.20\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 71.42(\mathrm{CD}, \mathrm{t}, \mathrm{J}$ 23, $\mathrm{C}-1$), 79.60 ($\mathrm{CH}, \mathrm{C}-2$), 82.77 ($\mathrm{CH}, \mathrm{C}-3$), 111.21 (C, $\mathrm{Me}_{2} \mathrm{C}$), 127.76 (CH, Ph), 129.79 (CH, Ph), 133.28 (C, Ph), 135.58 (CH, Ph) and $135.63(\mathrm{CH}, \mathrm{Ph})$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 428.2367$. $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{DO}_{4} \mathrm{Si}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 428.2367$).
TBAF ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in THF; $9 \mathrm{~cm}^{3}, 9.0 \mathrm{mmol}$) was added to a solution of the (\pm)-alcohol ($2.58 \mathrm{~g}, 6.04 \mathrm{mmol}$) in dry THF $\left(60 \mathrm{~cm}^{3}\right)$. After being stirred for 1 h at room temperature, the solvent was removed by evaporation and the residue was chromatographed over silica gel $\left[(9: 1) \mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{EtOH}]$ to give (\pm)- 4β-(hydroxymethyl)- $2 \alpha, 3 \alpha$-(isopropylidenedioxy) $\left(1-^{2} \mathrm{H}\right)$ cyclopentan-1 α-ol $(1.14 \mathrm{~g})$ as an oil; $v_{\text {max }}{ }^{-}$ (neat) $/ \mathrm{cm}^{-1} 3419,2987,2939,2876,1377,1210,1161,1133$ and $1076 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.34$ and 1.53 (each 3 H , each s, each $\left.\mathrm{Me}_{2} \mathrm{C}\right), 1.68-1.81(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.88(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 13.5, $5-\mathrm{H}), 2.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{OH}), 2.19-2.32(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.53$ ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{OH}$), 3.47 ($1 \mathrm{H}, \mathrm{dd}, J 7$ and $10.5,6-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{dd}, J$ 5.5 and $10.5,6-\mathrm{H}), 4.46(1 \mathrm{H}, \mathrm{d}, J 6,2-\mathrm{H})$ and $4.52(1 \mathrm{H}, \mathrm{dd}, J 2$ and $6,3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 24.25$ and $26.07\left(\mathrm{CH}_{3}, \mathrm{Me}_{2} \mathrm{C}\right), 34.39$ $\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 44.22(\mathrm{CH}, \mathrm{C}-4), 63.38\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 71.05(\mathrm{CD}, \mathrm{t}, \mathrm{J}$ $22.7, \mathrm{C}-1), 79.54(\mathrm{CH}, \mathrm{C}-2), 82.49(\mathrm{CH}, \mathrm{C}-3)$ and $111.38(\mathrm{C}$, $\mathrm{Me}_{2} \mathrm{C}$) (Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 190.1190. $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{DO}_{4}$ requires $\left.[M+H]^{+}, 190.1190\right)$.
The (\pm)-diol ($1.12 \mathrm{~g}, 5.90 \mathrm{mmol}$) was dissolved in a mixture of THF and water ($1: 1 ; 100 \mathrm{~cm}^{3}$), Amberlyst $15\left(\mathrm{H}^{+}\right)$ionexchange resin (916 mg) was added, and the mixture was heated
at $65^{\circ} \mathrm{C}$ for 15 h . The resin was removed by filtration and the filtrate was concentrated under reduced pressure. The residue $(2.0 \mathrm{~g})$ was chromatographed over silica gel $\left[(3: 1) \mathrm{CHCl}_{3}{ }^{-}\right.$ $\mathrm{MeOH}]$ to give $(\pm)-4 \beta-($ hydroxymethyl $)\left(1-{ }^{2} \mathrm{H}\right)$ cyclopentane$1 \alpha, 2 \alpha$-triol $17(850 \mathrm{mg}, 96 \%), R_{\mathrm{f}} 0.15$, as an oil; $v_{\text {max }}(\mathrm{neat}) / \mathrm{cm}^{-1}$ 3341, 2927, 1329, 1189, 1088 and $1019 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 1.65(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $14,5-\mathrm{H}), 1.88(1 \mathrm{H}, \mathrm{dd}, J 10$ and 14, 5-H), 2.17-2.31 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.47-3.62 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$) and 3.73-3.86 $(2 \mathrm{H}, \mathrm{m}, 2-$ and $3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 33.72\left(\mathrm{CH}_{2}\right.$, C-5), 47.10 (CH, C-4), $67.80\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 72.63$ (CD, t, $J 22.4, \mathrm{C}-$ 1), $75.10(\mathrm{CH}, \mathrm{C}-2)$ and $75.45(\mathrm{CH}, \mathrm{C}-3)$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]$, ${ }^{+}$ 167.1142. $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{DO}_{4}$ requires $\left[M+\mathrm{NH}_{4}\right]^{+}, 167.1142$).

Acknowledgements

We thank the SERC and the DTI for a research assistantship (to K. A. S.) under the aegis of the Biotransformations LINK Scheme. We also thank the SERC Mass Spectroscopy Service at Siwansea and Dr. V. Sik (Department of Chemistry, Exeter University) for measurement and interpretation of NMR spectra.

References

1 R. J. Parry, K. Haridas, R. De Jong and C. R. Johnson, J. Chem. Soc., Chem. Commun., 1991, 740; Tetrahedron Lett., 1990, 31, 7549.
2 K.-I. Tadano, K. Hakuba, H. Kimura and S. Ogawa, J. Org. Chem., 1989, 54, 276.
3 E. A. Saville-Stones, S. D. Lindell, N. S. Jennings, J. C. Head and M. J. Ford, J. Chem. Soc., Perkin Trans. 1, 1991, 2603, and references therein.
4 K. A. Shoberu and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 1991, 2606.

5 J. K. Cha, W. J. Christ and Y. Kishi, Tetrahedron, 1984, 40, 2247.
6 K.-I. Tadano, M. Hoshino, S. Ogawa and T. Suami, J. Org. Chem., 1988, 53, 1427; C. Marschner, G. Penn and H. Griengl, Tetrahedron Lett., 1990, 31, 2873.

Paper 2/01821G
Received 6th April 1992
Accepted 8th June 1992

[^0]: * Depending on the moisture content the tetraol was more commonly obtained as an oil.

